
C h a p t e r 2

Circuits

Chapter 1 describes how numbers are represented and manipulated by computers, but how are

these representations physically realized, and how are these manipulations actually effected? At

a high level, computer components (such as central processing units or CPUs) are constructed

from digital circuits which are constructed from logic gates which are in turn ultimately con-

structed from transistors. In this chapter, we examine digital circuits and how they are con-

structed from logic gates (and ultimately transistors), and in the next chapter we will examine

the mathematics which underpins these components at a logical level, Boolean algebra.

2.1 Transistors and Switches

A transistor is effectively a digital switch which is used to either establish or break an electrical

connection, in much the same way that a light switch can either connect or disconnect a light

bulb to or from household current. Diagrammatically,1 switches are shown below. Note that the

Figure 2.1: Diagrammatic representation of a digital switches. The left switch is “normally
open” while the right switch is “normally closed.”

1The switching, logic gate, and circuit diagrams in this chapter are courtesy of the Wikipedia: http://en.

wikipedia.org/wiki/Logic gate and http://en.wikipedia.org/wiki/Adder (electronics).

19

http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Adder_(electronics)


20 Circuits

left switch is “normally open” and “pushing” the switch establishes the electrical connection,

while the right switch is “normally closed” and “pushing” the switch breaks the electrical

connection.

2.2 Basic Logic Gates: AND, OR, NOT

Switches can be wired together to form basic logic gates which are used to construct circuits

which can manipulate numbers. The basic logic gates are the AND, OR, and NOT gates.

2.2.1 AND Gate

An AND gate takes two inputs (switches) and is “on” (switched) so long as both switches have

been “pushed”. In terms of switches, an AND gate is represented diagrammatically as follows.

In this diagram, A and B represent the two input switches, and a connection is established

Figure 2.2: Switch diagram of an AND gate.

only if both switches are “pushed.” Logic gates arise so frequently that they have their own

diagrammatic representations; the diagram corresponding to an AND gate is given below.

Actual CPUs constructed from circuits, logic gates, and ultimately transistors do not function

Figure 2.3: Logic diagram of an AND gate.

physically like switches in that no transistor is actually ever “pushed.” Instead, a “high” voltage

(typically +5V) given as input to a transistor causes it to “close” and supply a “high” voltage

to its output; similarly, a “low” voltage (typically 0V) given as input to a transistor causes

it to remain “open” and supply no voltage (i.e., 0V) to its output. Physically and logically,

binary 1s and 0s are represented by these “high” and “low” voltages, respectively. Given this

representation, we can describe the action of an AND gate using a truth table. For example,

the truth table corresponding to the possible actions of an AND gate are given below. Given

two inputs (A and B) which can each take on two values (0 or 1), there are four possible input



2.2 Basic Logic Gates: AND, OR, NOT 21

A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

Figure 2.4: Truth table corresponding to an AND gate.

pairs to the AND gate. Each row in the truth table corresponds to one such input pair, and

the corresponding output of the AND gate is also given. Note that the “A AND B” is 1 if and

only if both A and B are 1; this corresponds to the logical idea that for a connection to be

established, both switches must be “pushed.”

2.2.2 OR Gate

An OR gate takes two inputs and is “on” so long as at least one of the inputs is “on.” The

switch diagram, logic gate representation, and truth table for an OR gate is given below. Note

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

Figure 2.5: OR: switch diagram, logic gate, and truth table.

that an OR gate is 1 (“on”) if and only if at least one of its inputs is 1, and note how this is

realized physically with switches.

2.2.3 NOT Gate

The final basic logic gate is the NOT gate. Unlike the AND and OR gates, the NOT gate

has only one input, and its output is simply the opposite of its input. The switch diagram,

logic gate representation, and truth table for a NOT gate is given below. Note that in the

switch diagram, the switch is of the “normally closed” variety; pushing the switch breaks the

connection in this case.



22 Circuits

A NOT A

0 1
1 0

Figure 2.6: NOT: switch diagram, logic gate, and truth table.

2.3 Other Logic Gates: NAND, NOR, XOR, XNOR

As we shall learn in the next chapter, every conceivable truth table and its corresponding logic

gate can be realized using combinations of AND, OR, and NOT gates. However, some truth

tables are so common that they have their own dedicated logic gate representations; four such

logic gates are described below.

2.3.1 NAND Gate

The NAND gate is the opposite of an AND gate: it is 1 (on) if and only if it is not the case

that both of its inputs are 1. A NAND gate can be constructed from an AND gate whose

output is attached to a NOT gate. The switch diagram, logic gate representation, and truth

table for a NAND gate is given below. The NAND gate has two interesting properties: (1) It is

A B A NAND B

0 0 1
0 1 1
1 0 1
1 1 0

Figure 2.7: NAND: switch diagram, logic gate, and truth table. Note the use of normally
closed switches.

the simplest logic gate to construct from common electrical components (transistors, resistors,

wires, etc.) or to fabricate as part of an integrated circuit. (2) The NAND gate is “logically

complete” in that every conceivable truth table, logic gate, or circuit can be constructed solely

from NAND gates.

2.3.2 NOR Gate

The NOR gate is the opposite of an OR gate: it is 1 (on) if and only if it is not the case that

at least one of its inputs 1. A NOR gate can be constructed from an OR gate whose output is



2.3 Other Logic Gates: NAND, NOR, XOR, XNOR 23

attached to a NOT gate. The switch diagram, logic gate representation, and truth table for a

NOR gate is given below.

A B A NOR B

0 0 1
0 1 0
1 0 0
1 1 0

Figure 2.8: NOR: switch diagram, logic gate, and truth table. Note the use of normally closed
switches.

2.3.3 XOR Gate

The XOR gate is the “exclusive OR” gate; it is 1 (on) if and only if one input is 1, but not both.

The logic gate representation and truth table for a XOR gate is given below. The XOR gate

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.9: XOR: logic gate and truth table.

is very useful in implementing binary arithmetic. Consider adding two binary digits: if both

bits are 0, the sum is 0; if one of the bits is 0 and the other bit is 1, the sum is 1; and if both

bits are 1, the sum is 2, or in binary, 10. Note that the XOR gate gives the proper output of

the least significant bit in adding two bits, and further note that an AND gate gives the proper

output of the most significant bit (or carry) in adding two bits. Such a simple circuit is called

a half adder ; see the figure below. In later sections, we will see how logic gates can be used to

A B S C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 2.10: Half adder circuit and truth table.

perform arithmetic on arbitrarily long binary numbers.



24 Circuits

2.3.4 XNOR Gate

The XNOR gate is the “exclusive NOR” gate; it is the opposite of the XOR gate, and can be

constructed by an XOR gate whose output is attached to a NOT gate. The XNOR gate is 1

(on) if and only if both of its inputs are identical (i.e., both 1 or both 0). The XNOR gate

is used to test if its inputs are identical, and as a consequence, it is often referred to as the

“equivalence gate.”

A B A XNOR B

0 0 1
0 1 0
1 0 0
1 1 1

Figure 2.11: XNOR: logic gate and truth table.

2.4 Binary Arithmetic: Ripple Carry Adders

As we saw in the previous chapter, in order to perform the addition of two binary numbers, one

must in each column sum the corresponding bits from each input number together with any

input carry bit, producing an output bit and possibly a carry bit. Letting A, B, and Ci denote

the first and second input bits and the input carry bit, and letting S and Co denote the output

sum and carry bit, the following truth table shown in Figure 2.12 represents the required action

for a circuit dealing with one column of binary addition; a circuit implementing this truth table

is shown in Figure 2.13

Stringing together a series of full adders, one for each column binary addition, yields a ripple

carry adder as shown in Figure 2.14.

A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.12: Full truth table.



2.4 Binary Arithmetic: Ripple Carry Adders 25

Figure 2.13: Circuit implementing a full adder

0FA3

A3 B3

S3

FA2

A2 B2

S2

C3
FA1

A1 B1

S1

C2

A0 B0

C1

S0

FA0
C4

Figure 2.14: Ripple carry adder for four-bit addition. Here, FAi represents a full adder for
column i, and note the use of a 0 for the initial “carry in” to column 0.



26 Circuits

Exercises

Exercise 2.1

Converting circuits to truth tables.

a. Convert the following circuit to its equivalent truth table.

B Out

A

b. What logical operation does this circuit compute?

Exercise 2.2

Convert the following truth table to an equivalent circuit.

A B C Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1


