Geometry Review

"Say you're me and you're in math class...."

Geometry Cohort
Weston Middle School
June 2013

Definitions

- Point-0 Dimensions- P
- Line Segment AB
- Midpoint
- Ray

Definitions

- 2 Co-linear Points define a line
- 2 intersecting lines define a plane

Circle Definitions

- Circle
- Radius
- Chord- 2 points on a circle
- Secant- line through 2 points
- Diameter
- Tangent
- Major Arc, Minor Arc

Angles

- 2 rays form angle
- Vertex, Sides
- Adjacent Angles-share a side
- Acute Angle- < 90
- Right Angles
- Obtuse Angles> 90

- Straight angle= 180
- Reflex Angle > 180

Angles-2

- Lines that intersect form Vertical angles
- Vertical angles are equal
- Supplementary angles add up to 180
- Complementary angles add up to 90

Parallel Lines and Transversals

Parallels: If lines are parallel ...

Corresponding angles are equal. $m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8$
Alternate Interior angles are equal. $m<3=m<6, \quad m<4=m<5$
Alternate Exterior angles are equal. $m<1=m<8, \quad m<2=m<7$
Same side interior angles are supp.
$m<3+m<5=180, \quad m<4+m<6=180$

Triangle Types

Triangles:

By Sides:

Scalene - no congruent sides Isosceles - 2 congruent sides Equilateral - 3 congruent sides By Angles:
Acute - all acute angles Right - one right angle Obtuse - one obtuse angle

Equiangular -3 congruent angles $\left(60^{\circ}\right)$
Equilateral \leftrightarrow Equiangular

Exterior angle of a triangle equals the sum of the 2 non-adjacent interior angles.

Triangles-1

- 3 points connected with line segments form triangle
- Sum of interior angles= 180 degrees
- Exterior angle = sum of its remote interior angles

$$
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{C}=180
$$

Congruent Triangles

Two figures are congruent if they can sit on top of each other

Congruent Triangles

Congruent Triangles
SSS
SAS
ASA
AAS
HL (right triangles only)
CPCTC (use after the triangles are congruent)

Perimeter, Area

- Perimeter= measurement around
- Area

AREA and PERIMETER

Rectangle- 4 right angles, opposite sides equal Right Triangle- has 2 legs and a hypotenuse Area of right triangle= $1 / 2$ product of legs

Area of Rectangle $=\mathrm{b} \cdot \mathrm{h}$

Similarity

- Two figures are similar if one is simply a blown-up/rotated version of the other

Similar Triangles

Similar Triangles:

AA
SSS for similarity
SAS for similarity
Corresponding sides of similar
triangles are in proportion.

Similar Triangles

Right Triangles

Pythagorean Theorem:

$c^{2}=a^{2}+b^{2}$
Converse: If the sides of a triangle satisfy $c^{2}=a^{2}+b^{2}$ then the triangle is a right triangle.

Pythagorean Formula

Similar Triangles $b / d=a / e=(d+e) / b$

30-60-90 Triangle, Equilateral Triangle

Similar Triangles

Pythagorean Triples

- Set of three integers that satisfy the Pythagorean Theorem

m	n	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
2	1	3	4	5
4	1	15	8	17
6	1	35	12	37
8	1	63	16	65
10	1	99	20	101
3	2	5	12	13
4	3	7	24	25
5	2	21	20	29
5	4	9	40	41
6	5	11	60	61

Plimpton Tablet 1900 B.C.E.

Heron's Formula

Angle Bisectors

www.mathwarehouse.com

Angle Bisectors of a triangle are concurrent!

Angle Bisectors: The angle bisectors of a triangle are concurrent. Notice that the point of concurrence is in the interior of the triangles.

Angle Bisectors of an acute triangle.

Angle Bisectors of an obtuse triangle.

The point of concurrence is the center of an inscribed circle within the triangle. The point of concurrence is called the incenter.

Perpendicular Bisectors

Perpendicular Bisectors: The perpendicular bisectors of the sides of a

 triangle are concurrent. Notice that the point of concurrence is not necessarily in the interior of the triangles.

The point of concurrence is the center of a circumscribed circle about the triangle. The point of concurrence is called the circumcenter.

Euler Line

Euler Line: In any triangle, the

 circumcenter, centroid, and orthocenter are collinear (lie on the same straight line). The collinear line upon which these three points lie is called the Euler line. The centroid is always located between the circumcenter and the orthocenter. The centroid is twice as close to the circumcenter as to the orthocenter.

The word "Euler" is pronounced as if it were spelled "Oiler" and refers to the mathematician Leonhard Euler (1707-1783).

Altitudes

Altitudes: An altitude of a triangle is a segment from any vertex perpendicular to the line containing the opposite side. The lines containing the altitudes of a triangle are concurrent. Notice that the point of concurrence is not necessarily inside the triangle.

Altitudes of an acute triangle.

The point where the lines containing the altitudes are concurrent is called the orthocenter of a triangle. (The prefix "ortho" means "right".)

Medians

Medians: A median of a triangle is a segment joining any vertex to the midpoint of the opposite side. The medians of a triangle are concurrent. Notice that the point of concurrence is in the interior of the triangles.

Medians of an acute triangle.

Medians of an obtuse triangle.

Archimedes showed that the point where the medians are concurrent is the center of gravity of a triangular shape of uniform thickness and density. This point where the medians are concurrent is called the centroid of a triangle. If you cut a triangle out of cardboard and balance it on a pointed object, such as a pencil, the pencil will mark the location of the triangle's centroid.
The centroid divides the medians into a $2: 1$ ratio. The section of the median nearest the vertex is twice as long as the section near the midpoint of the triangle's side.

Length of a median

- If the length of a median is $1 / 2$ the length of the side to which it is drawn, the triangle must be a right triangle. Moreover, the side to which it is drawn is the hypotenuse

Quadrilaterals-

Interior angles = 360 degrees-
Alternative 1: Trapezoids have 1 pair of parallel sides

Quadrilaterals- Alternative Arrangement- Trapezoids have at least one pair of parallel sides

Trapezoids

- (At least?)Two sides are parallel
- Median= Average of the bases
- Area= Height x median

Parallelograms

- Both pairs of opposite sides equal
- Opposite Angles Equal, consecutive angles supplementary

	A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
	If a quadrilateral is a parallelogram, the 2 pairs of opposite sides are congruent. (Proof appears further down the page.)

Rhombus

- All sides Equal
- Diagonals Perpendicular
- Area= half the product of diagonals

Kite

Definition: A kite is a quadrilateral with two distinct pairs of adjacent sides that are conaruent.

Rectangle

All angles are 90 degrees Area= $1 \times$ w
Diagonals= sqrt ($\left.\left.\right|^{\wedge} 2{ }^{*} w^{\wedge} 2\right)$

Square

- All sides equal, all angles equal (90 degrees)
- Diagonal= side*sqrt2

Cyclic Quadrilaterals

each exterior angle is equal to the opposite interior angle. Sum of opposite angles= 180 degrees

Given:
$A B C D$
α
β
cyclic quadrilateral exterior angle opposite interior angle

(3) Antonio Gutierrez ww.gogeometry.com

Brahmagupta's Formula

Hypothesis
ABCD: cyclic quadrilateral
Sides a, b, c, d
Semiperimeter $s=\frac{a+b+c+d}{2}$

© Antonio Gutierrez ww.gogeometry.com

If and Only If

- Proving 'If and Only If' statements requires proving two different statements
"A month has less than thirty days if and only if the month is February"
To prove a statement true you must have a proof that covers all possibilities. To prove a statement false, you only have to show one counter-example.
Do not assume what you are trying to prove as part of a proof.

Related Conditionals

- If the figure is a rhombus, then it is a parallelogram; converse is false

Related Conditionals:

Converse: switch if and then
Inverse: negate if and then
Contrapositive: inverse of the converse (contrapositive has the same truth value as the original statement)

Polygons

Regular polygons

Triangle

Heptagon

Quadrilateral

Decagon

Angles in a Polygon

Polygon Interior/Exterior Angles:

Sum of int. angles $=180(n-2)$
Each int. angle (regular) $=\frac{180(n-2)}{n}$
Sum of ext. angles $=360$
Each ext. angle (regular) $=\frac{360}{n}$

Area of a Regular Polygon

- Area $=1 / 2 \times$ perimeter x apothem(distance from center to a side)

6. Notes - Area of Regular Polygons

$$
\begin{aligned}
& \mathrm{s}=10 \mathrm{~cm} \\
& \mathrm{a}=7 \mathrm{~cm} \\
& \mathrm{~A}=245 \text { square } \mathrm{cm} .
\end{aligned}
$$

Geometric Inequalities

The Triangle Inequality Theorem

$$
\begin{aligned}
& A+B>C \\
& B+C>A \\
& A+C>B
\end{aligned}
$$

Inequalities:

--Sum of the lengths of any two sides of a triangle is greater than the length of the third side.
--Longest side of a triangle is opposite the largest angle.
--Exterior angle of a triangle is greater than either of the two non-adjacent interior angles.

Geometric Inequalities

- When facing problems involving lengths of altitudes of a triangle, consider using area as a tool.

Funky Areas

Funky Areas

Circles

Area of a circle $=\pi x$ radius 2

Circumference of a circle $=\pi x$ diameter
remember that the diameter $=\mathbf{2} \mathbf{x}$ radius

Circles

3. Circle Theorems

Parts of a Circle...

Before we start going through each of the circle theorems, it is important we know the names for each part of the circle, as we will be using these terms in this section.

Three things you should Learn about Circle Theorems:

1) What each of the theorems say
2) How to spot them
3) How to show you are using circle theorems in your answers

And if you can do all these, then that's a pretty tricky topic all sorted!

Chords of a Circle

If chords of a circle are equal in length, they subtend equal arcs

Area of a Sector

$A=\frac{1}{2} \times(\theta-\sin \theta) \times r^{2}$

Thale's Theorem

- Any Angle Inscribed in a semicircle is a right angle (Thale's Theorem)

Circle Angles

Circle Angles:

Central angle $=$ arc \quad Inscribed angle $=$ half arc

Angle by tangent/chord = half arc

Angle formed by 2 chords
$=$ half the sum of arcs

Angle formed by 2 tangents, or 2 secants, or a tangent/secant $=$ half the difference of arcs

Inscribed Angles

The measure of an inscribed angle is $1 / 2$ the arc it intercepts

Inscribed Angles

Any two angles inscribed in the same arc are equal

Intersecting Chords

Theorems involving the chord of a circle

Product of segments theorem

$$
A \cdot B=C \cdot D
$$

Intersecting Chords Angles \& Arcs of Intersecting Chords

$$
\angle \mathrm{x}=\frac{1}{2}(\overparen{\mathrm{ABCC}}+\overparen{\mathrm{DFG}})
$$

Tangents

A Tangent Line is perpendicular to a radius

Tangent Chords

Secant-Secant Chords

Far Arc - Near Arc Formula

All of the formulas on this page can be thought of in terms of a "far arc" and a "near arc". The angle formed outside of the circle is always equal to the the far arc minus the near arc divided by 2 .

$$
\mathrm{m} \angle \mathrm{~K}=\frac{(\mathrm{far} \mathrm{arc}-\text { near arc })}{2}
$$

Secant-Secant Chords

Two tangents are equal!

- Hat Rule:

Power of a Point Theorem:

Suppose a line through a point P intersects a circle in two points, U and V. For all such lines, the product PU* PV is a constant.

```
Circle Segments
In a circle, a radius perpendicular to a chord
bisects the chord.
Intersecting Chords Rule:
(segment part })\cdot(\mathrm{ segment part )}
    (segment part)\bullet(segment part)
Secant-Secant Rule:
(whole secant)\bullet(external part)=
    (whole secant)\bullet(external part)
Secant-Tangent Rule:
(whole secant)})(\mathrm{ external part })=(\mathrm{ tangent }\mp@subsup{)}{}{2
Hat Rule: Two tangents are equal.
```


Power of a Point

Planes

- Three non-collinear points determine a plane
- Dihedral Angle: angle between the planes

The flve Platomic solids

The Tetrahedron The Cube

The Octahedron

The Dodecahedron

The Icosahedron

The five regular solids discovered by the Ancient Greek mathematicians are:
The Tetrahedron: 4 vertices 6 edges 4 faces each with 3 side
The Cube: 8 vertices 12 edges 6 faces each with 4 sides
The Octahedron: $\quad 6$ vertices 12 edges 8 faces each with 3 sides
The Dodecahedron: 20 vertices 30 edges 12 faces each with 5 sides
The Icosahedron: 12 vertices 30 edges 20 faces each with 3 sides
The solids are regular because the same number of sides meet at the same angles at each vertex and identical polygons meet at the same angles at each edge.
These five are the only possible regular polyhedra.

Prisms

Volume = base x height

Hexagonal Prism

3-D Figures

3-D Figures:

Prism: $V=B h$
Pyramid: $V=\frac{1}{3} B h$
Cylinder: $V=\pi r^{2} h ; S A=2 \pi r h+2 \pi r^{2}$
Cone: $V=\frac{1}{3} \pi r^{2} h ; \quad S A=s \pi r+\pi r^{2}$
Sphere: $V=\frac{4}{3} \pi r^{3} ; \quad S A=4 \pi r^{2}=\pi d^{2}$

Cube

Pyramid

Volume $=1 / 3$ *area of base*height Lateral Surface Area= $1 / 2$ Perimeter*slant height

Lateral and Surface Area of a
Pyramid

Cylinders

Cylinder
Surface We will need to calculate the surface Area area of the top, base and sides.
Area of the top is πr^{2}
Area of the bottom is πr^{2}
Area of the side is $2 \pi r h$
Therefore the Formula is: $\quad A=2 \pi r^{2}+2 \pi r h$

Cones

Volume $=1 / 3^{*}{ }^{*} i^{*} r^{\wedge} 2^{*} h$ LSA $=p i{ }^{*} r^{*} s$

Sphere

Spheres

Surface
Area

$$
A=4 \pi r^{2}
$$

Volume

$$
V=\frac{4}{3} \pi r^{3}
$$

Transformations

Translations

A translation "slides" an object a fixed distance in a given direction. The original object and its translation have the same shape and size, and they face in the same direction. A translation creates a figure that is congruent with the original figure and preserves distance (length) and orientation (lettering order). A translation is a direct isometry.

Translations T (x,y)

Translations

 A translation "slides" an object a fixed distance in a given direction. The original object and its translation have the same shape and size, and they face in the same direction. It is a direct isometry.$$
\begin{array}{l|l}
\hline \text { Translation of } \mathbf{h}, \mathbf{k}: & T_{h, k}(x, y)=(x+h, y+k)
\end{array}
$$

Rotations

- A rotation is a transformation that turns a figure about a fixed point called the center of rotation. Rays drawn from the center of rotation to a point and its image form an angle called the angle of rotation. (notation $R_{\text {degress }}$)

Rotations $\mathrm{R}(\mathrm{x}, \mathrm{y})$

Rotations A rotation turns a figure through an angle about a fixed point called the center. A positive angle of rotation turns the figure counterclockwise, and a negative angle of rotation turns the figure in a clockwise direction. It is a direct isometry. (assuming center of rotation to be the origin) Rotation of $\mathbf{9 0 ^ { \circ }}:$ $R_{90^{\circ}}(x, y)=(-y, x)$ Rotation of $\mathbf{1 8 0}$ Rotation of $\mathbf{2 7 0}$ $R_{480^{\circ}}(x, y)=(-x,-y)$ (same as point reflection in origin)

Reflections

- A reflection over a line k (notation r_{k}) is a transformation in which each point of the original figure (pre-image) has an image that is the same distance from the line of reflection as the original point but is on the opposite side of the line. Remember that a reflection is a flip. Under a reflection, the figure does not change size.

The line of reflection is the perpendicular bisector of the segment joining every point and its image.

Reflections $r(x, y)$

Line Reflections

A reflection is a flip. It is an opposite isometry - the image does not change size but the lettering is reversed.

Reflection in the \boldsymbol{x}-axis:	When you reflect a point across the x-axis, the x-coordinate remains the same, but the y-coordinate is transformed into its opposite. $P(x, y) \rightarrow P^{\prime}(x,-y)$ or $\quad r_{x \text {-axis }}(x, y)=(x,-y)$
Reflection in the \boldsymbol{y}-axis:	When you reflect a point across the y-axis, the y-coordinate remains the same, but the x-coordinate is transformed into its opposite. $P(x, y) \rightarrow P^{\prime}(-x, y)$ or $\quad r_{y-x x s}(x, y)=(-x, y)$
Reflection in $\boldsymbol{y}=\boldsymbol{x}:$	When you reflect a point across the line $y=x$, the x-coordinate and the y - coordinate change places. $P(x, y) \rightarrow P^{\prime}(y, x) \quad$ or $\quad r_{y=x}(x, y)=(y, x)$
Reflection in $\boldsymbol{y}=\mathbf{- x}:$	When you reflect a point across the line $y=-x$, the x-coordinate and the y - coordinate change places and are negated (the signs are changed). $P(x, y) \rightarrow P^{\prime}(-y,-x)$ or $\quad r_{y=-x}(x, y)=(-y,-x)$

Point Reflections

A point reflection exists when a figure is built around a single point called the center of the figure. It is a direct isometry.

Reflection in the Origin:	While any point in the coordinate plane may be used as a point of reflection, the most commonly used point is the origin. $P(x, y) \rightarrow P^{\prime}(-x,-y)$ or $\quad r_{\text {origin }}(x, y)=(-x,-y)$

Glide Reflections
 Reflection over a line + translation

Dilations

Dilations $D_{k}(x, y)$

Dilations	A dilation is a transformation that produces an image that is the same shape as the original, but is a different size. NOT an isometry. Forms similar figures.
Dilation of scale factor \mathbf{k} :	The center of the dilation is assumed to be the origin unless otherwise specified $D_{k}(x, y)=(k x, k y)$

Compositions-

Done in order from right to left

6. Which composition of transformations will map

$$
\triangle A B C \rightarrow \triangle A^{\prime} B^{\prime} C^{\prime} ?
$$

Choose: (dilations centered at origin)
$\bigcirc R_{90} \circ \circ D_{0.5} \circ T_{2,0}$
© $T_{2,0} \circ R_{90^{\circ}} \circ D_{0.5}$
○ $R_{90^{\circ}} \circ D_{2} \circ T_{2,0}$
○ $T_{2,0} \circ R_{90^{\circ}} \circ D_{2}$

Analytic Geometry

Slopes and Equations:
$m=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
$y=m x+b$ slope-intercept
$y-y_{1}=m\left(x-x_{1}\right)$ point-slope

Coordinate Geometry Formulas:
Distance Formula:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint Formula:

$$
(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Analytic Geometry

Analytic Geometry

The product of slopes of perpendicular lines is -1
If two lines have the same slope, they are parallel

Circle Equations

Circles:

Equation of circle center at origin:
$x^{2}+y^{2}=r^{2}$ where r is the radius.
Equation of circle not at origin:
$(x-h)^{2}+(y-k)^{2}=r^{2}$ where (h, k) is the
center and r is the radius.

Trigonometry

The Sine, Cosine and Tangent functions express the ratios of sides of a right triangle.

Trigonometry

$\sin A=\cos (90-A)$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

This well-known equation is called a Pythagorean
Identity.
The value of θ is immaterial.

Law of Cosines

In triangle problems dealing with 2 sides and 2 angles we have seen that the Law of Sines is used to find the missing item. There are many problems, however, that deal with all three sides and only one angle of the triangle. For these problems we have another method of solution called the Law of Cosines.

With the diagram labeled at the left, the Law of Cosines is as follows:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Notice that $<C$ and side c are at opposite ends of the formula. Also, notice the resemblance (in the beginning of the formula) to the Pythagorean Theorem.

Law of Sines

In this diagram, notice how the triangle is labeled. The capital letters for the vertices are repeated in small case on the side opposite the corresponding vertex.

The ratios of each side to the sine of its "partner" are equal to each other.

Law of Sines

$$
\begin{gathered}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
\text { or } \\
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{gathered}
$$

Missing Lines

- The key to many problems is drawing the magic missing line
- Segments that stop inside figures should be extended
- Label lengths as you find them
- If you see 30,60 , or 90 degree angles- buildm 30-60-90 degree triangles
- When in doubt, build right triangles

Good Luck!

