
C h a p t e r 9

Algorithms for Searching and

Sorting: Description and Analyses

Searching and sorting are two of the most fundamental and widely encountered problems in

computer science. In this chapter, we describe four algorithms for search and three algorithms

for sorting.

9.1 Algorithms for Searching

Given a collection of objects, the goal of search is to find a particular object in this collection

or to recognize that the object does not exist in the collection. Often the objects have key

values on which one searches and data values which correspond to the information one wishes

to retrieve once an object is found. For example, a telephone book is a collection of names (on

which one searches) and telephone numbers (which correspond to the data being sought). For

the purposes of this handout, we shall consider only searching for key values (e.g., names) with

the understanding that in reality, one often wants the data associated with these key values.

The collection of objects is often stored in a list or an array. Given a collection of n objects

in an array A[1 . . n], the i-th element A[i] corresponds to the key value of the i-th object in the

collection. Often, the objects are sorted by key value (e.g., a phone book), but this need not

be the case. Different algorithms for search are required if the data is sorted or not.

The input to a search algorithm is an array of objects A, the number of objects n, and the

key value being sought x. In what follows, we describe four algorithms for search.
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9.1.1 Unordered Linear Search

Suppose that the given array was not necessarily sorted. This might correspond, for example,

to a collection exams which have not yet been sorted alphabetically. If a student wanted to

obtain her exam score, how could she do so? She would have to search through the entire

collection of exams, one-by-one, until her exam was found. This corresponds to the unordered

linear search algorithm. Note that in order to determine that an object does not exist in the

collection, one needs to search through the entire collection.

Now consider the following array:

i 1 2 3 4 5 6 7 8

A 34 16 12 11 54 10 65 37

Consider executing the Unordered-Linear-Search algorithm on this array while searching

for the number 11. The first four elements would need to be examined until the fourth element

containing the value 11 is found. In analyzing the performance of search algorithms, we will

consider these “examination counts” as a measure of the performance of such algorithms.

Now consider executing the Unordered-Linear-Search on this array while searching for

the number 13. Since 13 does not exist in the array, one must examine all eight of the array

elements until one could definitively return “13 not found.”

9.1.2 Ordered Linear Search

Now suppose that the given array is sorted. In this case, one need not necessarily search through

the entire list to find a particular object or determine that it does not exist in the collection.

For example, if the collection of exams were sorted by name, one need not search beyond the

“P”s to determine that the exam for “Peterson” does or does not exist in the collection. A

simple modification of the above algorithm yields the ordered linear search algorithm. Note

that while scanning the array from left-to-right (smallest-to-largest values), a search can now

be terminated early if and when it is determined that the number being sought (and as yet not

found) is less than the element currently being examined.

Now consider the following array, the sorted version of the array used in our previous

example:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Ordered-Linear-Search on this array while searching for the number

11. In this case, the first two elements would need to be examined until the second element

containing the value 11 is found.
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Now consider executing the Ordered-Linear-Search on this array while searching for

the number 13. Note that only the first four elements need be examined until the value 16 is

encountered and one can definitively return “13 not found.”

9.1.3 Chunk Search

Given an ordered list, one need not (and one typically does not) search through the entire

collection one-by-one. Consider searching for a name in a phone book or looking for a particular

exam in a sorted pile: one might naturally grab 50 or more pages at a time from the phone

book or 10 or more exams at a time from the pile to quickly determine the 50 page (or 10 exam)

“chunk” in which the desired data lies. One could then carefully search through this chunk

using an ordered linear search. Let c be the chunk size used (e.g., 50 pages or 10 exams). We

shall refer to the algorithm encoding the above ideas as chunk search.

Again consider the following array:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Chunk-Search on the above array while searching for the number 34

and using c = 3 (i.e., chunks of size 3). To determine if 34 is in the first chunk, the third

element (at the end of the first “chunk”) with value 12 must be examined. Since 34 > 12,

we next examine the sixth element (at the end of the second “chunk”) with value 37. Since

34 < 37, we conclude that the value 34, if it exists in the array, must be contained in the second

chunk. We then simply execute Ordered-Linear-Search on the subarray A[4 . . 6] consisting

of the three elements in the second chunk, eventually finding 34 in the fifth position.

Now consider executing Chunk-Search on the above array while searching for the num-

ber 33. Chunk-Search would behave exactly as described above, except that the call to

Ordered-Linear-Search would return “33 not found” when searching the subarray A[4 . . 6].

9.1.4 Binary Search

Now consider the following idea for a search algorithm using our phone book example. Select a

page roughly in the middle of the phone book. If the name being sought is on this page, you’re

done. If the name being sought is occurs alphabetically before this page, repeat the process on

the “first half” of the phone book; otherwise, repeat the process on the “second half” of the

phone book. Note that in each iteration, the size of the remaining portion of the phone book

to be searched is divided in half; the algorithm applying such a strategy is referred to as binary

search. While this many not seem like the most “natural” algorithm for searching a phone book
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(or any ordered list), it is provably the fastest. This is true of many algorithms in computer

science: the most natural algorithm is not necessarily the best!

Again consider the following array:

i 1 2 3 4 5 6 7 8

A 10 11 12 16 34 37 54 65

Consider executing the Binary-Search on this array while searching for the number 34. Two

determine if 34 is in the first or second half of the array, we split the array in half, considering

the fourth element (at the end of the “first half”) whose value is 16. Since 34 > 16, we conclude

that the number 34, if it exists in the array, must be contained in the second half, i.e., the

subarray A[5 . . 8]. We then repeat on the second half of the array, splitting it in half and

considering the sixth element whose value is 37. Since 34 < 37, we continue with the subarray

A[5 . . 6], finding the element whose value is 34 in the next iteration.

Now consider executing Binary-Search on this array while searching for the number

33. Binary-Search will behave exactly as described above until the last subarray of size 1

containing only the element whose value is 34 is considered. At this point, one can definitively

return “33 not found” since there are no subarrays yet to be searched which could possibly

contain the number 34.

9.2 Analysis of Algorithms

One of the major goals of computer science is to understand how to solve problems with comput-

ers. Developing a solution to some problem typically involves at least four steps: (1) designing

an algorithm or step-by-step procedure for solving the problem, (2) analyzing the correctness

and efficiency of the procedure, (3) implementing the procedure in some programming language,

and (4) testing the implementation. One of the goals of CSU200 and CSU211 is to provide you

with the tools and techniques necessary to accomplish these steps. In this handout, we consider

the problem of analyzing the efficiency of algorithms by first considering the algorithms for

search that we developed earlier.

How can one describe the efficiency of a given procedure for solving some problem? Infor-

mally, one often speaks of “fast” or “slow” programs, but the absolute execution time of an

algorithm depends on many factors:

• the size of the input (searching through a list of length 1,000 takes longer than searching

through a list of length 10),

• the algorithm used to solve the problem (Unordered-Linear-Search is inherently

slower than Binary-Search),
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• the programming language used to implement the algorithm (interpreted languages such

as Basic are typically slower than compiled languages such as C++),

• the quality of the actual implementation (good, tight code can be much faster than poor,

sloppy code), and

• the machine on which the code is run (a supercomputer is faster than a laptop).

In analyzing the efficiency of an algorithm, one typically focuses on the first two of these factors

(i.e., the “speed” of the algorithm as a function of the size of the input on which it is run),

and one typically determines the number of program steps (or some count of other interesting

computer operations) as a function of the input size—the actual “wall clock” time will depend

on the programming language used, the quality of the code produced, and the machine on

which the code is run.

The latter three factors are important, but they typically induce a constant factor speedup

or slowdown in the “wall clock” execution time of an algorithm: a 2GHz PC will be twice

as fast as a 1GHz PC, a compiled language may run 10 times faster than an interpreted one,

“tight” code may be 30% faster than “sloppy” code, etc. However, a more efficient algorithm

may induce a speedup which is proportional to the size of the input itself: the larger the input,

the greater the speedup, as compared to an inefficient algorithm.

Finally, when analyzing the efficiency of an algorithm, one often performs a worst case

and/or an average case analysis. A worst case analysis aims to determine the slowest possible

execution time for an algorithm. For example, if one were searching through a list, then in

the worst case, one might have to go through the entire list to find (or not find) the object in

question. A worst case analysis is useful because it tells you that no matter what, the running

time of the algorithm cannot be slower than the bound derived. An algorithm with a “good”

worst case running time will always be “fast.” On the other hand, an average case analysis

aims to determine how fast an algorithm is “on average” for a “typical” input. It may be

the case that the worst case running time of an algorithm is quite slow, but in reality, for

“typical” inputs, the algorithm is much faster: in this case, the “average case” running time

of the algorithm may be much better than the “worst case” running time, and it may better

reflect “typical” performance.

Average case analyses are usually much more difficult than worst case analyses—one must

define what are “typical” inputs and then “average” the actual running times over these typical

inputs—and in actual practice, the average case running time of an algorithm is usually only a

constant factor (often just 2) faster than the worst case running time. Since worst case analyses

are (1) interesting in their own right, (2) easier to perform than average case analyses, and (3)
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often indicative of average case performance, worst case analyses tend to be performed most

often.

With this as motivation, we now analyze the efficiency of the various algorithms for search

described above.

9.2.1 Linear Search

Consider the Unordered-Linear-Search algorithm discussed above. This algorithm simply

iterates through the array, examining its elements one-by-one. Note that each iteration of this

algorithm takes some constant amount of time to execute, dependent on the programming

language used, the actual implementation, the machine on which the code is run, etc. Since we

do not know this constant, we may simply count how many times the algorithm iterates or how

many array elements must be examined; the running time of the algorithm will be proportional

to this count. For searching and sorting algorithms, we shall consider the number of array

elements which must be examined as an indicator of the performance of the algorithm.

In the worst case, on an input of size n, the number being sought will be compared to each

of the n elements in the array for a total of n array examinations. Let T (n) be the function of

n which describes the running time of an algorithm. We then have

T (n) = n

in the worst case. This is a linear function—if one where to plot T (n) vs. n, it would be a

straight line—and this explains why this algorithm is referred to as a linear search algorithm.

Now consider the Ordered-Linear-Search algorithm described above.

In the worst case, on an input of size n, if the number being sought is at least as large as

every element in the array A, then each array element must be examined. Thus, we again have

T (n) = n

in the worst case, which is a linear function.

9.2.2 Chunk Search

Now consider the Chunk-Search algorithm described above.

One element must be examined for each chunk considered, for a maximum of n/c such

examinations on an array of size n using chunks of size c. Ordered-Linear-Search will then

be performed on a chunk of size c (at most), engendering c further element examinations in the
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worst case. We therefore have

T (n) = n/c + c. (9.1)

Note that the running time of Chunk-Search depends on both n and c. What does this

analysis tell us? We can use this analysis, and specifically Equation 9.1, in order to determine

the optimal chunk size c; i.e., the chunk size which would minimize the overall running time of

Chunk-Search (in the worst case).

Suppose that one were to run Chunk-Search using a very small value of c. Our chunks

would be small, so there would be lots of chunks. Much of the time would be spent trying to

find the right chunk, and very little time would be spent searching for the element in question

within a chunk. Consider the extreme case of c = 1: in the worst case, n/c = n/1 = n element

examinations would be spent trying to find the right chunk while only c = 1 examinations

would be spent searching within a chunk for a total of n + 1 examinations (in the worst case).

This is worse than Unordered-Linear-Search or Ordered-Linear-Search (though it is

still linear).

Now consider using a very large value of c. Our chunks would be big, so there would

be few of them, and very few element examinations would be spent finding the right chunk.

However, searching for the element in question within a very large chunk would require many

such examinations. Consider the extreme case of c = n: in the worst case, n/c = n/n =

1 element examinations would be spent “finding” the right chunk (our chunk is the entire

list) while c = n examinations would be spent searching within a chunk for a total of n + 1

compares (in the worst case). This is again worse than either Unordered-Linear-Search

or Ordered-Linear-Search (though, again, it is still linear).

Is Chunk-Search doomed to be no faster than linear search? No! One must optimize the

value of c in order to minimize the total number of comparisons, and this can be accomplished

by choosing a value of c which balances the time (number of examinations) spent finding the

right chunk and the time spent searching within that chunk.

Suppose that we wish to spend precisely equal amounts of time searching for the correct

chunk and then searching within that chunk; what value of c should we pick? Our goal is then

to find a c such that n/c (the time spent searching for a chunk) is equal to c (the time spent

searching within a chunk). We thus have

n/c = c

⇔ n = c2

⇔
√

n = c.
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Thus, the desired chunk size is c =
√

n, and using this chunk size, we have

T (n) = n/c + c

= n/
√

n +
√

n

=
√

n +
√

n

= 2
√

n.

Note that for sufficiently large n, this is much faster than a linear search. For example, if

n = 1, 000, 000, Ordered-Linear-Search would require 1,000,000 element examinations in

the worst case, while Chunk-Search would require approximately 2,000 examinations in the

worst case—Chunk-Search would be 500 times faster (in the worst case).

Do even better values of c exist? No. One can show through the use of calculus that c =
√

n

is optimal. We essentially have a function (n/c + c) which we wish to minimize with respect

to c. Taking the derivative with respect to c, setting this derivative to zero, and solving for c

yields c =
√

n.

9.2.3 Binary Search

Finally, consider the Binary-Search algorithm discussed above. In each iteration of binary

search, one element is examined and the procedure either returns (if the number being sought

is found or the subarray being considered cannot further be cut in half) or the (sub)array being

considered is cut in half. The question now becomes, how many times can one cut an array

of size n in half until there is only one element left? This is the maximum number of array

elements that will be examined. Consider: Cutting an array of size n in half yields n/2. Cutting

this array in half again yields (n/2)/2 = n/22 = n/4. Cutting the array in half a third time

yields ((n/2)/2)/2 = (n/22)/2 = n/23 = n/8. In general, cutting an array in half k times yields

an array of size n/2k. How large can k be until n/2k is one? We have

n/2k = 1

⇔ n = 2k

⇔ log2 n = k.

Therefore, at most log2 n iterations will be performed until the array can no longer be cut in

half, and thus the worst case running time of Binary-Search is

T (n) = log2 n.
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This is faster still than even Chunk-Search: on an array of size 1,000,000 Binary-Search

would perform 20 comparisons (in the worst case), as compared to 2,000 for Chunk-Search

and 1,000,000 for Ordered-Linear-Search! This is the power of fast algorithms.

9.3 Algorithms for Sorting

Ordered-Linear-Search, Chunk-Search, and Binary-Search each assume that the un-

derlying array or list which is being searched is already in sorted order. How can one take an

unordered array or list and sort it? Algorithms for sorting are fundamental to computer sci-

ence and dozens have been developed. In this section, we shall consider three such algorithms:

Insertion-Sort, Selection-Sort, and Merge-Sort.

9.3.1 Insertion Sort

Insertion-Sort corresponds to the method that many people use to sort cards as they are

being dealt to them. The first card is placed in one’s hand, the second card is compared to the

first and placed either before or after it, and so on. In general, one has some i cards, in sorted

order, in one’s hand, and the i + 1st card is compared to successive cards (starting from the

left or right) until the proper location to “insert” the card is found.

Now consider the following array:

i 1 2 3 4 5 6 7 8

A 34 16 12 11 54 10 65 37

Let us consider how to sort this array using Insertion-Sort. Imagine the numbers 34, 16,

12, . . . , being “dealt” to you, in this order, like cards. You would start with the number 34, a

trivially sorted list. Then the number 16 would be inserted into this list, producing the sorted

list “16 34.” The number 12 would then be inserted into this list, producing “12 16 34,” and

so on. In general, in phase k of the algorithm, the kth element of the array is inserted into the

sorted list formed from the first k − 1 elements of the array. The process of insertion sort is

shown below, where a diamond 3 is used to separate the processed and sorted array elements

from the as yet unprocessed array elements.
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Phase Processed 3 Unprocessed

0 3 34 16 12 11 54 10 65 37

1 34 3 16 12 11 54 10 65 37

2 16 34 3 12 11 54 10 65 37

3 12 16 34 3 11 54 10 65 37

4 11 12 16 34 3 54 10 65 37

5 11 12 16 34 54 3 10 65 37

6 10 11 12 16 34 54 3 65 37

7 10 11 12 16 34 54 65 3 37

8 10 11 12 16 34 37 54 65 3

Analysis: What is the running time of Insertion-Sort on an array containing n elements?

In phase 1 of the algorithm, the first array element must be examined. In phase 2 of the algo-

rithm, the second element must be examined and compared to the first (which must therefore

be examined). In general, in the kth phase of Insertion-Sort, the kth element must be ex-

amined, and in the worst case, it may be compared to each of the previously processed k − 1

elements, resulting in k total elements being examined. Thus, the total number of elements

examined (in the worst case) is given by

1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n.

We shall consider mathematical techniques for determining the size of such sums in Chapter 10.

9.3.2 Selection Sort

While Insertion-Sort can be used to process cards on-line, as they are being dealt, the next

algorithm we shall consider cannot proceed until all the cards have been dealt. However, in

sorting a list or array of elements that are all given in advance, both algorithms are equally

applicable.

Selection-Sort begins by examining the list of elements, “selecting” the smallest one,

and “swapping” it with the first element of the list. In phase 2, Selection-Sort selects the

smallest element from the remaining n−1 elements and swaps it with the element in position 2.

In general, in the kth phase, Selection-Sort selects the smallest element from the remaining

n − k + 1 elements and swaps it with the element in position k. The process of selection sort

is shown below.
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Phase Processed 3 Unprocessed

0 3 34 16 12 11 54 10 65 37

1 10 3 16 12 11 54 34 65 37

2 10 11 3 12 16 54 34 65 37

3 10 11 12 3 16 54 34 65 37

4 10 11 12 16 3 54 34 65 37

5 10 11 12 16 34 3 54 65 37

6 10 11 12 16 34 37 3 65 54

7 10 11 12 16 34 37 54 3 65

8 10 11 12 16 34 37 54 65 3

Analysis: What is the running time of Selection-Sort on an array containing n elements?

In phase 1 of the algorithm, all n elements must be examined in order to find the smallest

element. In phase 2 of the algorithm, the n − 1 remaining elements must all be examined to

find the second smallest element. In general, in phase k of the algorithm, the remaining n−k+1

elements must all be examined to determine the kth smallest element. Thus, the total number

of elements examined is given by

n + (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1.

Note that this is the same sum as given by the analysis of Insertion-Sort, only written

backwards. Again, we shall consider mathematical techniques for determining the size of such

sums in Chapter 10.

9.3.3 Merge Sort

In Chapter 11 we shall consider a third algorithm for sorting, Merge-Sort, whose imple-

mentation is inherently recursive and whose analysis depends on the mathematical technique of

recurrences. Merge-Sort is provably faster than either Insertion-Sort or Selection-Sort,

in the worst case.

Exercises

In the problems that follow, you will consider three of the algorithms for search which we

discussed in class: Ordered-Linear-Search, Chunk-Search, and Binary-Search. Let

T1(n), T2(n), and T3(n), respectively, be the number of element examinations1 required by
1worst-case. . .
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these algorithms when run on a list whose length is n. We have

T1(n) = n

T2(n) =
√

n

T3(n) = log2(n).

In the problems that follow, you will compare and contrast the growth rates of these functions.

Exercise 9.1

On a single sheet of graph paper, plot the number of element examinations required for each

of the three algorithms when run on lists of length n = 1, 2, 4, 8, and 16. For each algorithm,

connect the plot points with a smooth, hand-drawn curve. See the plots given in the “Exponen-

tials and Logs” handout for examples of what you should do. You may print a piece of graph

paper from the PDF located at the following URL:

http://www.printfreegraphpaper.com/gp/c-i-14.pdf

(If you view this assignment on-line, you may simply click on the above hyperlink.)

Exercise 9.2

i. Suppose that you were given a budget of 20 element examinations. For each of the three

algorithms, determine the largest array length such that the number of examinations

made is guaranteed to be at most 20.

ii. How many times larger is the array that Binary-Search can handle, as compared to

the arrays that Chunk-Search and Ordered-Linear-Search can handle? How many

times larger is the array that Chunk-Search can handle, as compared to the array that

Ordered-Linear-Search can handle?

Exercise 9.3

Moe, Larry, and Curly have just purchased three new computers. Moe’s computer is 10 times

faster than Larry’s and 50 times faster than Curly’s.2 However, Moe runs Ordered-Linear-Search

on his computer, while Larry and Curly run Chunk-Search and Binary-Search, respec-

tively. Moe, Larry, and Curly begin to perform searches over various data stored on their

computers. . .
2In other words, Moe’s computer can perform 50 operations (such as an element examination) in the time it

takes Curly’s computer to perform one operation, and Moe’s computer can perform 10 operations in the time it
takes Larry’s computer to perform one operation.

http://www.printfreegraphpaper.com/gp/c-i-14.pdf
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i. How large must n (the size of the array) be so that Curly’s computer begins to outperform

Moe’s?

ii. How large must n be so that Larry’s computer begins to outperform Moe’s?

iii. How large must n be so that Curly’s computer begins to outperform Larry’s?

Hint: For parts of this problem, you will have to solve an equation that involve n (or
√

n)

and log2 n. Such equations typically cannot be solved analytically, i.e., by applying the rules of

algebra to obtain a formula for n. Such equations are often solved numerically by using. . . binary

search! Consider the equation

10 log2 n = n.

First, find two initial values of n, one of which causes the left-hand side of the equation to

exceed the right, and the other of which causes the right-hand side of the equation to exceed

the left. The solution to the equation lies somewhere between these two values. For example,

when n = 2, the left-hand side of the equation is 10 while the right-hand side is 2. Conversely,

when n = 128, the left-hand side is 70 while the right-hand side is 128. The solution to this

equation lies somewhere between n = 2 and n = 128. One could then apply binary search in

this range to find the solution in question. (Think about which half of the interval one should

search and why.)

Exercise 9.4

Consider the setup described in the problem above.

i. Moe and Curly both run a search on the same data set. Despite the fact that Curly’s

machine is 50 times slower than Moe’s, Curly’s machine performs the search 100 times

faster than Moe’s machine. How large is the data set?

ii. Suppose that Moe switches to Chunk-Search. On this same data set, will Moe’s machine

now outperform Curly’s? Explain.

Hint: Again, for part of this problem, you will need to solve an equation using binary search.




